Copied to
clipboard

G = C24.9C23order 192 = 26·3

2nd non-split extension by C24 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.9C23, D24:10C22, M4(2):19D6, C12.60C24, C23.26D12, Dic12:9C22, D12.23C23, Dic6.23C23, (C2xC8):5D6, C4oD24:10C2, C8:D6:13C2, (C2xC24):8C22, C4.73(C2xD12), C8.9(C22xS3), (C2xC4).157D12, (C2xC12).205D4, C8.D6:13C2, C12.239(C2xD4), (C2xM4(2)):5S3, (C6xM4(2)):5C2, C4.57(S3xC23), C6.27(C22xD4), C24:C2:10C22, C4oD12:17C22, (C2xD12):53C22, C3:1(D8:C22), C22.22(C2xD12), C2.29(C22xD12), (C22xC6).120D4, (C22xC4).283D6, (C2xC12).798C23, (C2xDic6):64C22, (C3xM4(2)):21C22, (C22xC12).268C22, (C2xC6).64(C2xD4), (C2xC4oD12):27C2, (C2xC4).225(C22xS3), SmallGroup(192,1307)

Series: Derived Chief Lower central Upper central

C1C12 — C24.9C23
C1C3C6C12D12C2xD12C2xC4oD12 — C24.9C23
C3C6C12 — C24.9C23
C1C4C22xC4C2xM4(2)

Generators and relations for C24.9C23
 G = < a,b,c,d | a24=b2=1, c2=d2=a12, bab=a11, ac=ca, dad-1=a13, bc=cb, bd=db, cd=dc >

Subgroups: 728 in 262 conjugacy classes, 107 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC6, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic6, Dic6, C4xS3, D12, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, C2xM4(2), C4oD8, C8:C22, C8.C22, C2xC4oD4, C24:C2, D24, Dic12, C2xC24, C3xM4(2), C2xDic6, S3xC2xC4, C2xD12, C4oD12, C4oD12, C2xC3:D4, C22xC12, D8:C22, C4oD24, C8:D6, C8.D6, C6xM4(2), C2xC4oD12, C24.9C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, D12, C22xS3, C22xD4, C2xD12, S3xC23, D8:C22, C22xD12, C24.9C23

Smallest permutation representation of C24.9C23
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 37)(26 48)(27 35)(28 46)(29 33)(30 44)(32 42)(34 40)(36 38)(39 47)(41 45)
(1 31 13 43)(2 32 14 44)(3 33 15 45)(4 34 16 46)(5 35 17 47)(6 36 18 48)(7 37 19 25)(8 38 20 26)(9 39 21 27)(10 40 22 28)(11 41 23 29)(12 42 24 30)
(1 43 13 31)(2 32 14 44)(3 45 15 33)(4 34 16 46)(5 47 17 35)(6 36 18 48)(7 25 19 37)(8 38 20 26)(9 27 21 39)(10 40 22 28)(11 29 23 41)(12 42 24 30)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,37)(26,48)(27,35)(28,46)(29,33)(30,44)(32,42)(34,40)(36,38)(39,47)(41,45), (1,31,13,43)(2,32,14,44)(3,33,15,45)(4,34,16,46)(5,35,17,47)(6,36,18,48)(7,37,19,25)(8,38,20,26)(9,39,21,27)(10,40,22,28)(11,41,23,29)(12,42,24,30), (1,43,13,31)(2,32,14,44)(3,45,15,33)(4,34,16,46)(5,47,17,35)(6,36,18,48)(7,25,19,37)(8,38,20,26)(9,27,21,39)(10,40,22,28)(11,29,23,41)(12,42,24,30)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,37)(26,48)(27,35)(28,46)(29,33)(30,44)(32,42)(34,40)(36,38)(39,47)(41,45), (1,31,13,43)(2,32,14,44)(3,33,15,45)(4,34,16,46)(5,35,17,47)(6,36,18,48)(7,37,19,25)(8,38,20,26)(9,39,21,27)(10,40,22,28)(11,41,23,29)(12,42,24,30), (1,43,13,31)(2,32,14,44)(3,45,15,33)(4,34,16,46)(5,47,17,35)(6,36,18,48)(7,25,19,37)(8,38,20,26)(9,27,21,39)(10,40,22,28)(11,29,23,41)(12,42,24,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,37),(26,48),(27,35),(28,46),(29,33),(30,44),(32,42),(34,40),(36,38),(39,47),(41,45)], [(1,31,13,43),(2,32,14,44),(3,33,15,45),(4,34,16,46),(5,35,17,47),(6,36,18,48),(7,37,19,25),(8,38,20,26),(9,39,21,27),(10,40,22,28),(11,41,23,29),(12,42,24,30)], [(1,43,13,31),(2,32,14,44),(3,45,15,33),(4,34,16,46),(5,47,17,35),(6,36,18,48),(7,25,19,37),(8,38,20,26),(9,27,21,39),(10,40,22,28),(11,29,23,41),(12,42,24,30)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order122222222344444444466666888812121212121224···24
size1122212121212211222121212122224444442222444···4

42 irreducible representations

dim1111112222222244
type++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D6D12D12D8:C22C24.9C23
kernelC24.9C23C4oD24C8:D6C8.D6C6xM4(2)C2xC4oD12C2xM4(2)C2xC12C22xC6C2xC8M4(2)C22xC4C2xC4C23C3C1
# reps1444121312416224

Matrix representation of C24.9C23 in GL4(F73) generated by

004646
00270
433000
431300
,
07200
72000
005966
00714
,
27000
02700
00270
00027
,
46000
04600
00270
00027
G:=sub<GL(4,GF(73))| [0,0,43,43,0,0,30,13,46,27,0,0,46,0,0,0],[0,72,0,0,72,0,0,0,0,0,59,7,0,0,66,14],[27,0,0,0,0,27,0,0,0,0,27,0,0,0,0,27],[46,0,0,0,0,46,0,0,0,0,27,0,0,0,0,27] >;

C24.9C23 in GAP, Magma, Sage, TeX

C_{24}._9C_2^3
% in TeX

G:=Group("C24.9C2^3");
// GroupNames label

G:=SmallGroup(192,1307);
// by ID

G=gap.SmallGroup(192,1307);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,675,570,80,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^24=b^2=1,c^2=d^2=a^12,b*a*b=a^11,a*c=c*a,d*a*d^-1=a^13,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<